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Bifurcations of  reaction channels are related to valley-ridge inflection points 
and it is examined what happens when these do not coincide with transition 
states. Under such conditions there result bifurcating regions. There exist a 
number of different prototypes for such regions which are discussed explicitly 
on the basis of the pertinent Taylor expansions. When bifurcations occur 
close enough to transition states then there result bifurcating transition regions. 
An example for a bifurcating transition region is exhibited which is obtained 
from a quantum mechanical ab initio calculation for the ring opening of 
cyclopropylidene to allene. In general there exist no orthogonal trajectory 
patterns which could serve as simplified models for channel bifurcations. 
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1. The location of bifurcations 

When Cs symmetry is lost during a reaction, then there must occur a bifurcation 
somewhere along the reaction path, because there exist two products which are 
transformed into each other by the Cs operation, whereas there is only one reactant 
which goes into itself under this operation [1]. Bifurcations also occur when C2 
or a higher symmetry is lost [2]. In many cases the reaction path starts out 
maintaining the C~ symmetry and one would then expect three possibilities as 
regards the bifurcation, namely that it could occur before, at or after the transition 
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state. In the first case there exist of course two transition states which, too, are 
transformed into each other by the Cs operation. Indeed, it has been found that 
the transition state occurs before the bifurcation for the isomerizations H2CO 
HCOH and H3CO~ H2COH [3, 4] and that the bifurcation occurs before the 
transition state for the isomerization H 2 C S -  HCSH [5], and for the exchange 
reaction 37Clq-H35C1+ H37C1+35C1 [6]. Miller [7] as well as Garrett, Truhlar, 
Wagner and Dunning [6] have discussed the simultaneous symmetric treatment 
of  the dynamics along both reaction paths when the bifurcation occurs before 
the transition state. The ring opening of  HeCCCH2 discussed in Sect. 6 is a case 
where the bifurcation occurs almost at the transition state. 

The study of  such energy surfaces leads to the question where on the reaction 
path a bifurcation should be perceived to take place. The dynamic trajectories 
cover a reaction channel and, in a certain region, this channel will divide into 
two branches. It would be convenient if one could locate such branching regions 
by examining the topography of energy surfaces without making dynamical 
calculations. One might think that information to this end could be obtained by 
looking for bifurcations or orthogonal trajectories on energy surfaces. It turns 
out, however, that orthogonal trajectories are unsuited as reaction path models for 
the description of  bifurcations. 

To be sure, bifurcations of orthogonal trajectories do exist, but their locations 
are severely restricted. To begin with, since such a bifurcation requires that several 
orthogonal trajectories emanate from one point in directions forming angles 
different from 180 ~ with each other, it is apparent that it can occur only when the 
gradient vanishes, i.e., at stationary points. Indeed, all minima and maxima are 
"mult ifurcation" points, i.e. confluences of  infinitely many orthogonal trajectories. 
For a transition state to be such a bifurcation point, it must have downhill 
trajectories forming angles other than 180 ~ with each other. For an ordinary 
second order saddle point this would require the hessian to have at least two 
negative eigenvalues and, then, the saddle point would no longer be a transition 
state, because least energy paths circumvent second order saddle points with 
more than one negative eigenvalue of  the hessian [8]. For a transition state to be 
a bifurcation point oforthogonal trajectories, it is therefore necessary that the hessian 
has a zero eigenvalue at that point. As a matter of fact, bifurcations of orthogonal 
trajectories are even more severely restricted. For in Sect. 3 it will be seen that 
they do not bifurcate at transition points where only one eigenvalue of the hessian 
vanishes. The hessian must have at least two zero eigenvalues at a transition state 
for orthogonal trajectories to bifurcate at that point. An example is the "monkey 
saddle" 

E ( x , y ) = l  a x 3 - x y  2, a > 0 ,  (1.1) 

whose contours, together with some of  the orthogonal trajectories given by 

[(2 + a )x  2 -  y2]ya = constant, (1.2) 

are shown in Fig. 1. The orthogonal trajectories for constant = 0 consist of the 
three straight lines 

y = 0 ,  y = x ~ ,  y = - x V ~ T a ,  (1.3) 
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Fig. 1. The  s u r f a c e  E = 0.Sx 3 - xy 2. Light solid lines: c o n t o u r s  fo r  E < 0. Heavy solid lines: c o n t o u r s  

fo r  E>-O. Lowest heavy contour: E = 0 .  I n c r e m e n t  b e t w e e n  adjacent contours: 0.3. Dotted lines: 
se lec ted  o r t h o g o u a l  t ra jec to r ies  

each of which changes from a valley floor to a ridge crest at the origin. Therefore 
the least energy orthogonal trajectory, coming up from one valley, splits up at 
the origin to descend into one or the other of the two valleys. 

It will also become evident in Sect. 3 however that, in fact, transition states 
usually are points of bifurcation even if only one eigenvalue of the hessian 
vanishes there. And it will be seen in Sect. 4 that there exist surfaces which have 
bifurcating character in regions away from stationary points. In none of  these 
cases do there exist any least-energy orthogonal trajectories which bifurcate anywhere 
between reactants and products t. 

For energy surfaces of actual physical systems it must be considered rather 
improbable, as several authors have pointed out [8], that an eigenvalue of the 
hessian vanishes exactly at a transition state because the latter is already com- 
pletely determined by the vanishing of all first derivatives. The kind of bifurcation 
discussed in Sect. 3 is therefore expected to be a rare numerical accident. By the 
same token the monkey saddle, where two eigenvalues of the hessian vanish at 
the transition point, is extremely unlikely and one is thus led to the conclusion 
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that least energy orthogonal trajectories split up "almost always" at minima, i.e., 
at those points on the energy surface which correspond to the reactants. 

On the other hand,  there do exist reactions which start out along one channel 
and subsequently branch into two channels to reach two products. The energy 
surfaces discussed in Sects. 4 and 5 correspond to such cases. It is apparent  from 
what has been said before that there exist no orthogonal trajectory patterns onto 
which one can map such channel bifurcations. The question arises therefore whether 
bifurcations can be located on energy surfaces without referring to orthogonal 
trajectories. This question is addressed in the present investigation. 

We find an answer by focussing attention on the following fact: I f  the path of a 
reaction at first follows a valley on the reaction surface and then comes to a point 
where the valley turns into a ridge, then the reaction path can be expected to bifurcate 
near that point [9]. The reason is simple. Whereas the valley floor is a "stable 
pa th"  in the sense that there exists a restoring force which tends to drive the 
trajectories of  the system back to the floor, the crest of  a ridge is an unstable 
path in as much as the slightest deviation of the system's trajectories will lead 
to their veering away further and further. Bifurcations are thus expected near 
valley-ridge inflection points, which we shall call VRI points. 

We define VRI points as follows: the hessian matrix has a zero eigenvalue and 
the corresponding eigenvector is perpendicular to the gradient at that point. For the 
hessian to have a zero eigenvalue, its determinant must vanish, i.e. 

Ex~Eyy - E~y, (1.4) 

and this equation determines a curve in the (x, y) space. At any point on this 
curve the eigenvector with the zero eigenvalue is given by 

N'{E~y, -Exx} = N"{Eyy, -Exy}, (1.5) 

and for this eigenvector to be orthogonal to the gradient requires that 

E~Exy - ExxEy = ExEyy - ExyEy = 0. (1.6) 

The intersections of  the two curves defined by Eqs. (1.4) and (1.6) determine the 
VRI points. Since the gradient is parallel to the eigenvector with nonzero eigen- 
value at such points, they lie on gradient extremals [10]. Indeed, for the surface 
discussed in Sect. 3.2 of  the preceding paper  [10], a VRI point was found at 
(x = 0.685, y = 0.920) as shown by the vanishing of A' on Fig. 4, by the contours 
on Fig. 2, and as commented upon at the end of Sect. 3.2 of  that paper. On Fig. 
2 of  the preceding paper  [10] the entrance channel separates in the two exit 
channels over a wide and flat region containing the VRI point which one can 
consider as the bifurcation region. 

In the present investigation we are particularly interested in the case that the 
bifurcation region encompasses transition states so that one has a bifurcating 
transition region. Although, for the reasons given above, the exact coincidence 
of  a transition state with a VRI point is expected to be a rare accident, near- 
coincidences seem to be less so. Indeed this investigation was prompted by the 
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discovery of such an approximate coincidence on the energy surface which will 
be discussed in Sect. 6. We shall examine the neighborhoods of valley-ridge 
inflection points on surfaces having C, symmetry and we shall consider all possible 
cases under the condition that the hessian has only one vanishing eigenvalue at 
the VRI point. 

The present analysis has also a practical application. It is apparent that the energy 
surface is very flat within a bifurcating transition region and that it is therefore 
difficult to determine the transition state and the VRI point accurately by standard 
second-order interpolation. The higher-order Taylor expansions discussed in the 
sequel furnish the appropriate interpolative tool under these circumstances, as 
will be illustrated in Sect. 6. 

2. Energy surface in the neighborhood of a valley-ridge inflection point 

Consider a reaction surface in terms of  two internal coordinates, E = E(x, y), 
which has Cs symmetry. When the system point lies on the line of symmetry, 
then the molecular system itself has Cs symmetry. If  the system point does not 
lie on this line, then the molecule does not have Cs symmetry, but there then 
exists another system point, related to the first by the C, reflection, which 
corresponds to the molecular geometry which is the mirror image of the previous 
one. 

If  the x-axis is chosen to be identical with the trace of the C, symmetry plane 
in the x - y  plane, then one has E ( x , - y ) = E ( x , y )  and the surface can be 
expressed in the form 

E(x, y) = F(x, yZ). (2.1) 

On the C, plane, i.e. for y = 0, one has then 

OE/Oy = O, (2.2) 

OZE / (Oy) 2 = 20F/O(ya). (2.3) 

From Eq. (2.2) it is apparent that the surface is a valley or a ridge along the 
x-axis. Specifically, 

the x-axis is a valley (or a cirque), if OF/O(y 2) > 0, (2.4) 

the x-axis is a ridge (or a cliff), if OF/O(y 2) < 0. (2.5) 

We are interested in the neighborhood of those points where a valley (cirque) 
changes into a ridge (cliff), i.e. where 

OF/d(y) 2 = 0, (2.6) 

which we called valley-ridge inflection (VRI) points. 

Without loss of generality, the origin, where x = 0, may be placed at the VRI 
point whose neighborhood is of interest. Furthermore by adding an appropriate 
constant to E the zero o f  the energy surface can be shifted to the origin. Thus 
the conditions 

F(x, y2) = O, OF/8(y) 2 = 0 (2.7) 
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are valid at the origin x = y  = 0 and, hence, the expansion of F up to second 
order in x and y2 around the origin has the form 

E (x, y) = F(x,  y2) = A~x + A2 x2 + 2A3xy 2 + A4 y4. 

The first and second derivatives of this function are 

Ex = A1 + 2A2x + 2A3y 2, 

Ey = 4y(A3x + A4ye), 

Exx = 2A2, 

Eyy = 4A3x + 12A4y 2, 

Exr = 4A3y. 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.9e) 

The eigenvalues of  the hessian at the VRI point are 0 and 2A2. Since we assume 
one eigenvalue to be non-zero we must ha ~ A2 # 0 and this justifies the neglect 
of  terms in x 3 and x 4 in Eq. (2.8). 

In the present context we are interested in transition states and this corresponds 
to the case that on the x-axis, where E = A~x + A2x 2, the surface has a maximum, 
implying that the value of A2 is negative. We further assume that for large negative 
x-values we start in a valley on the x-axis. In view of the choice of the origin 
this implies that the x-axis is a valley for x < 0  and a ridge for x >  0. Since, 
according to Eq. (2.9d) one has Eyy = 2A3x on the x-axis, it follows furthermore 
that the value of A3 is also negative. Thus we consider only the case 

A2<0,  A3<0.  (2.10) 

The value of  A1 determines the position of  the maximum on the x-axis. This 
maximum occurs for 

x,, = -A1/2A2,  (2.11) 

at which point the energy surface assumes the value 

E,,, = -A~/4A2.  (2.12) 

If  A1 is positive (case 3 below), then the point (xm, 0) lies on the ridge part of 
the x-axis and is a true (relative) maximum of the surface since, according to 
Eqs. (2.9c, d, e) one has Exx < 0, Eyy < 0, Exy = 0 at this point. On the other hand, 
if Aa is negative (case 2 below), then this point lies in the valley part of the x-axis 
and it is a saddlepoint, since Eqs. (2.9c, d, e) now yield Exx < 0, Eyy > O, Exy = O. 
If  the value of  A~ vanishes (case 1), then the point (x,,, 0) lies at the origin and 
is a higher order point, a kind of saddle where, however, the valley changes into 
a ridge. 

The value of  A 4 determines the shape of  the function contours in a more 
complicated manner which will be the object of the subsequent sections. The 
domain of  A4 is conveniently divided into five regions. These five cases are 
characterized in Table 1. In the cases (a),  (b), (c), (d) ,  i.e. for A4>-A2/A2, it is 
also useful to express the function E(x,  y) in the form 

E(x, y) = a x -  b(x + Cay2)(x + c2y2), (2.13) 
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Case Regions of A4 Regions of c 1 and c 2 

(a) A4>0 c1>0 , c2<0; c l + c 2 = 2 A 3 / A 2 > O  

(b) A4=0 c t = 2 A 3 / A a > O  ' c2= 0 
(c) O > A 4 > A 2 / A 2  c1>0 , c2>0; q + c 2 = 2 A 3 / A  2 

(d )  A 4 = A23/A2 c 1 = c 2 = A 3 / A  2 

(e)  An < A Z / A 2  complex 

Note that A 3 and A 2 are both negative (see Eq. 2.10) 

where the coefficients are related to those of Eq. (2.8) by the relations 

A1 = a, A2 = -b ,  2A3 = - b ( e j  + c2), A4 = -be l t2 ,  (2.14) 

cz = ( A 3 - ' ~ / A ~ - A 2 A 4 ) / A z ,  c2 = ( A ~ + ~ / A ~ - A 2 A a ) / A 2 .  (2.15) 

It is apparent that Eq. (2.10) implies 

b > 0 ,  Cl+Cz>O. (2.16), (2.17) 

The behavior of cl and c z for the five cases (a) to (d) is shown in the last column 
of Table 1. Each of  these five possible cases for A 4 has to be combined, of course, 
with the aforementioned three possible cases for A1. 

Equation (2.13) can also be written in the factored form 

E = E o -  B ( x  + c l y  2 ~ Xl)(X § r  2 -  x e )  ' (2.18) 

where the constants E0, x~, x2 are defined by 

E o = ( 1 - 7 2 )  Era, x t = ( l + y ) x m ,  x 2 = ( 1 - y ) x m ,  (2.19) 

with E,~ and x,, being the quantities given by Eqs. (2.11), (2.12) and 3' being 
defined by 

Y = (cl + c2)/(c~ - c2). (2.20) 

It is apparent that the contour corresponding to the energy value E = Eo consists 
of the union of  the two 'parabolas 

x =  x l - c a y  2 and x = x 2 - c 2 y  2. (2.21) 

Finally we comment briefly on a subtlety. For the surface of Eq. (2.8) the x-axis 
is also a gradient extremal [10] as can be readily verified from Eq. (3.3) of [10]. 
One can therefore make the distinction between a valley and a cirque, and that 
between a ridge and a cliff (Sect. 2.2 of  [ 10]). By virtue of  the discussion in Sect. 
3.1 of [10] the following is readily verified. At the VRI point a valley turns into 
a ridge when A1 < 0 (bifurcation after transition state) and this is confirmed by 
the contour diagrams shown in Sect. 4. On the other hand, a cirque turns into a 
cliff at the VRI point when A~ > 0 (bifurcation before transition state) and this 
is confirmed by the figures in Sect. 5. For simplicity we shall nonetheless continue 
to use the word "valley" to imply a valley or a cirque, and the word "ridge" to 
imply a ridge or a cliff. 
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3. First case: bifurcation at transition state 

Whereas it was no loss of generality to place the origin at the VRI point, it cannot 
be expected in general that one has also E~ (x = 0, y = 0 )=  A~ = 0 at this same 
point, i.e. that the origin is a stationary point as well as a VRI point. In the spirit 
of  the arguments quoted in Sect. 1 such a coincidence would be considered as 
"unlikely". Nonetheless it is of interest to discuss this case first, before considering 
the general case of nonvanishing A~. If A~ = a vanishes in Eq. (2.13) then we 
can, with no loss of generality, consider the prototype function 

E(x, y) = - (x  + cly2)(x + c2y2). (3.1) 

On the x-axis, the maximum occurs at the origin, where E = 0. It is apparent 
that the contours going through the origin are given by the two parabolas 

x+c~y2=O and x+c2y2=O. (3.2) 

Figure 2 displays the contours for case ( la ) ,  i.e. when c~ and c2 have opposite 
signs (A4> 0), together with some typical orthogonal trajectories. The - x  axis 
is seen to be the bottom of a valley which ascends to the origin. The descent into 
the +x  direction is along a ridge. The contours that go through the origin, i.e. 
E (x, y) = 0, are the two parabolas of Eq. (3.2) that touch at the origin. The surface 
ascends in all directions that lie between these two parabolas. The origin has thus 
the character of  a transition state. Since the descent into the +x  direction is along 
a ridge, a reacting system that has come up the valley from the - x  direction, 
will fall of[ this ridge soon after passing through the transition state. 

For the special case where c~ = - c 2  the contours and orthogonal trajectories are 
those shown in Fig. 3. The ridge on the +x  axis has disappeared in agreement 
with the fact that now Eyy = 0 everywhere on the x-axis (see Eq. 2.9d). The surface 
has now the simple form 

E(x, y) = - x 2 +  e~y4, (3.3) 

and the origin is similar to an ordinary saddlepoint that lies at the intersection 
of  two orthogonal trajectories, one connecting two valleys, the other connecting 
two ridges. But in contrast to a second order saddlepoint, the contours passing 
through the saddle are tangent to each other rather than intersecting with a finite 
angle. This case corresponds to A3 = 0 which we had actually excluded in Sect. 2. 

Figure 4 displays the contours and some orthogonal trajectories for case (1 c) i.e. 
when c~ and c2 are both positive (A~/A2<A4<O). The main difference to Fig. 
2 is that one of  the parabolic contours going through the transition state has 
reversed its curvature. It is the one corresponding to c2. As before the surface 
ascends uphill from the transition state in all directions between the two parabolic 
contours passing through the transition state. As before the - x  direction is an 
ascending valley. As before the +x axis is a descending ridge, so that the origin 
is again a bifurcation point. 

Intermediate between the cases ( l a )  and (1 c) is case ( lb )  corresponding to A4 = 0 
and cz = 0, so that 

E(x, y) = - (x  + clyZ)x. (3.4) 
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Fig. 2. The surface E = - ( x +  1.5y2)(x-O.ly2). The top panel is an enlargement of  the region near 
the VRI point which is identified by a heavy dot. Light solid lines: contours for E <0 .  Heavy solid 
lines: contours for E >--O. Lowest heavy contour: E = 0. Increment between adjacent contours: 1.2 on 
lower panel, 0.3 on upper  panel. Dotted lines: selected orthogonal trajectories 
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Fig. 3. The surface  E=-(x+O.75y2) • 
(x  - 0.75y2). Light solid lines: con tours  for 

E < 0 .  Heavy solid lines: contours  for  E -> 
0, Lowest heavy contour: E = 0. I nc r emen t  

be tween  adjacent contours: 0.6. Dotted 
lines: selected o r thogona l  t ra jec tor ies  

It is apparent  that, now, one of  the contours passing through the transition state 
is the y-axis, indeed intermediate between Figs. 2 and 4. 

In all these cases there clearly are two exit channels, one on each side of  the 
positive x-axis, even though they look more like watersheds than like valleys. It 
should be noted that neither one of  these exit channels contains any orthogonal 
trajectory that connects with the transition state or the entrance channel. The only 
orthogonal trajectory that passes from the entrance channel into the half-plane 
x > 0 is the x-axis and it separates the two exit channels. All other orthogonal 
trajectories, even those very close to the x-axis, make a sharp left or right turn 
after passing the contour E = 0 and keep going uphill. It  is thus apparent  that 
there exist no orthogonal trajectories which could serve as a simplified skeleton 
pattern for the bifurcation. It is to this fact that we referred in the introduction. 

Figure 5a exhibits the contours and some orthogonal trajectories for case ( l d )  
corresponding to A 2 = A2A4 or, alternatively, cl = c2 > 0. The two parabolic con- 
tours passing through the origin coincide and the ridges going uphill from the 
transition state disappear. It is apparent  from Eq. (3.1) that all contours are 
parabolas (x + cxy 2) - -  const. However, all contours have E -< 0 so that the value 
of E decreases in both the + x  and - x  direction. One still has a valley on the - x  
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Fig, 4, The surface E = - ( x  + 1.5y2)(x + 0.1y2). The top panel is an enlargement of the area near the 
VRI point which is identified by a heavy dot. Light solid lines: contours for E < 0. Heavy solid lines: 
contours for E >- O. Lowest heavy contour: E = 0. Increment between adjacent contours: 1.2 on lower 
panel, 0.3 on upper panel. Dotted lines: selected orthogonal trajectories 
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Fig. 5. Upper panel: the surface E = - ( x + 0 . 5 y 2 )  2= - (x2+xy2+O.25y4) .  Lower panel: the surface 
E = - ( x  z + xy  2 + 0.333y4). Light solid lines: contours for E < 0. Heavy solid line: contour for E = 0. 
Increment  between adjacent contours: 0.3. Dotted lines: selected orthogonal trajectories 
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axis and a ridge on the +x  axis. The origin is still a VRI point. But the entire 
contour x +cly  2-- 0 represents the transition state. 

Figure 5b exhibits the contours and some orthogonal trajectories for case ( le)  
where A4< A2/A2 .  It is still true that we have a valley on the - x  axis and a ridge 
on the +x axis. The origin is still a VRI point, but the origin is a maximum not 
a transition state. 

4. Second case: transition state before bifurcation 

As discussed in the text after Eq. (2.12), there exists a saddlepoint on the negative 
x-axis when A1 is negative. It is now expedient to choose the distance of this 
saddlepoint from the origin (]xm[ = A1/2A2 ,  Eq. 2.11) as unit of length and the 
value of E at the saddlepoint ( - A 2 / 4 A 2 ,  Eq. 2.12) as unit of energy. Through 
this choice of  units the general expression (2.13) assumes the form 

E(x ,  y)  = - 2 x -  (x  + elyZ)(x + ezy2), (4.1) 

where ok(new) = 12AJAl]Ck(old).  

Figure 6 exhibits the contours and orthogonal trajectories for ease (2a) where 
ca and c2 have opposite signs (A4> 0). The difference to case ( la ) ,  where A1 = 0 
is that the transition state has separated from the VRI point at the origin. The 
transition state is the saddlepoint at x = -1 .  Coming up the valley from -x ,  the 
reaction path reaches this saddlepoint and then descends in a short valley towards 
the origin, where the valley turns into a ridge. 

In the special ease where c~ = -e2,  one has again Eyy = 0 on the entire x axis (see 
Eq. 2.9d). The resulting surface 

E = - 2 x  - x 2 + c~y 4 (4.2) 

differs from that of Eq. (3.3) only by the shift of the maximum to x = -1 .  The 
contours can therefore be obtained from those of  Fig. 3 by a corresponding shift 
along the x-axis and increasing all contour values by adding 1.0. 

Figure 7 shows the contours and orthogonal trajectories for case (2c) where ca 
and c2 are both positive (A2/A2  < A 4 < 0). The differences in the contours between 
Figs. 6 and 7 are similar to those between Figs. 2 and 4. Everything that has been 
said for Fig. 6 also applies to Fig. 7. 

If  the distance between the saddlepoint and the valley ridge inflection point, on 
either of these surfaces, is short compared to the overall length of the reaction 
path and if, in addition, the energy difference between these two places on the 
surface is small compared to their elevation over the reactant and product energies, 
then it is justified to consider the region encompassing both, the saddlepoint and 
the valley ridge inflection point, as a bifurcating transition region. For all intents 
and purposes, the bifurcation of the reaction path occurs immediately after 
passing through the saddle. 
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Fig. 6. The surface E = - 2 x - ( x +  1.5y2)(x-O.ly2). The top panel is an enlargement of the region 
near the VRI point which is identified by a heavy dot. Light solid lines: contours for E <0. Heavy 
solid lines: contours for E >-0. Lowest heavy contour: E ~ O. Increment between adjacent contours: 
1.333... on lower panel, 0.333... on upper panel. Dotted lines: selected orthogonal trajectories 
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Fig. 7. The surface E = - 2 x - ( x + l . 5 y 2 ) ( x + O . l y 2 ) .  The top panel is an enlargement of the region 
near the VRI point  which is identified by a heavy dot. Light solid lines: contours for E <0 .  Heavy 
solid lines: contours for E >-O. Lowest heavy contour: E = 0. Increment between adjacent contours: 
1.333 . . .  on lower panel, 0.333 . . .  on upper panel. Dotted lines: selected orthogonal trajectories 
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Fig. 8, Upper panel: the  surface  E = - 2 x  - (x  + 0.5y2) 2 = - (2x + .~2 q_ Xy2 Jr- 0,25y4). Lower panel: the  

surface  E = - ( 2 x + x 2 + x y 2 + 0 . 3 3 3 . . .  y4), Light solid lines: con tours  for E < 0 .  Heavy solid lines: 
con tours  for E >-O. Lowest heavy contour: E = 0. I n c r e m e n t  be tween  adjacent contours: 0.333 . . . .  

Dotted lines: se lec ted  o r thogona l  t ra jec tor ies  
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Intermediate between the cases (2a) and (2c) is case (2b) where A4 = 0 and 
c2 = 0, so that 

E (x, y) = - x ( 2  + x + cly2).  (4.3) 

It is apparent that, now, the contour passing through the VRI point is the y-axis, 
indeed intermediate between Figs. 6 and 7. 

As was the case in the preceding section, neither one of the two exit channels 
contains any orthogonal trajectory that connects with the VRI point or the 
transition state or the entrance channel. The only orthogonal trajectory that passes 
from the entrance channel into the half-plane x > 0 is the x-axis. It is a valley in 
the entrance channel and from the transition state to the VRI point. From there 
on out, it is a ridge that separates the exit channels. As before, there exist no 
orthogonal trajectories which could serve as a simplified pattern for modelling 
the bifurcation. 

Figure 8a exhibits the contours for the case (2d), corresponding to A 2= A2A4 
and c~ = c2 > 0. Figure 8b exhibits the contours for the case (2e), corresponding 
to A a < A 2 / A 2  . In both cases there still exists a saddlepoint. In case (2e) the 
whole saddlepoint region can however be circumvented. 

5. Third case: transition state after bifurcation 

As discussed in the text after Eq. (2.12), the maximum on the x-axis occurs for 
a positive x value when A~ is positive. It is furthermore a relative maximum in 
every direction. As in the preceding section, it is expedient to use its distance 
from the origin (xm = - A 1 / 2 A 2 ,  Eq. 2.11) as unit of  length and to choose the 
energy difference between the maximum and the origin (-A21/4A2, Eq. 2.11) as 
unit of energy. Thereby the energy surface assumes the form 

E(x ,  y)  = 2x - (x + cly2)(x + c2y2). (5.1) 

Figure 9 displays the contours and orthogonal trajectories of a surface of case 
(3a) where Cl and c2 have opposite signs (A4> 0). Figure 10 displays the contours 
and orthogonal trajectories for case (3c) where Cl and c2 are both positive 
(A~/A2 < A4 < 0). It is seen that, in both cases, the surface has two saddlepoints 
off the x-axis. The positions of these saddlepoints are obtained by using, in the 
stationary condition Ex = Ey = 0, the derivative expressions (2.9a), (2.9b) in con- 
junction with the surface of  Eq. (5.1). Assuming that y does not vanish, one 
thereby obtains the equation set 

2x+  (cl + e2)y 2 = 1, 

(r ~- r X "~- 2C1 c 2 y  2 = O, 

which has the solution 

xs = 1 - 3/2, y] = 3,2/c, 

where 

]/ = (e l  + C 2 ) / ( C l  - -  r 

(5.2a) 

(5.2b) 

(5.3) 

c = (ca + c2)/2. (5.4) 
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Fig. 9. The surface E = 2 x -  (x + 1.83666y2)(x-0.16334y2). The top panel is an enlargement of  the 
region near the VRI point which is identified by a heavy dot. Light solid lines: contours for E d 0 .  
Heavy solid lines: contours for E >-O. Lowest heavy contour: E = 0. Increment between adjacent 
contours: 1.2 on lower panel,  0.3 on upper  panel. Dotted lines: selected orthogonal trajectories 



Bifurcations and transition states 299 

'-2 -1 0 1 Y 2 
M 

'-4 -2 0 2 Y 

Fig. 10. The surface E = 2 x -  (x+ 1.87706y2)(x+O.12294y2). The top panel is an enlargement of  the 
region near the VRI point which is identified by a heavy dot. Light solid lines: contours for E < 0 ,  
Heavy solid lines: contours for E>--O. Lowest heavy contour: E = 0 .  Increment between adjacent 
contours: 1.2 on lower panel, 0.3 on upper  panel, Dotted lines: selected orthogonal trajectories 
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It should be noted that both, 3' and e, are positive in all cases. Hence, one has 
indeed two real stationary points, corresponding to Ys = +y/v/-d. For Cl and c2 
both positive, one has 3,> 1 and hence xs <0;  for el > 0, c2<0 (but el > [e2[), one 
has 3' < 1 and hence x, > 0, in agreement with Figs. 9 and 10. The value of  the 
surface at the saddlepoints is found to be 

Es = 1 - y2. (5.5) 

The contour which passes through the saddlepoint intersects the x-axis for 

x ' = l + y  and x " = l - y .  (5.6) 

According to Eqs. (2.18-21) the surface of  Eq. (5.1) can also be expressed in the 
factored form 

E ( x ,  y) = (1 - V 2) - Ix + cly  z - (1 + y) ] [x  + c2y 2 - (1 - y)], (5.7) 

from which, in conjunction with Eq. (5.5), it is apparent that the contours passing 
through the saddlepoints are the parabolas given by 

x = (1 + y) - ely  2, x = (1 - y) - c2y 2. (5.8) 

(It may be noted that, for the surfaces discussed in the preceding section, see 
Eq. (4.1), the first stationary condition, analogous to Eq. (5.2a), has the value 
( -1 )  on the right hand side. This leads to the solution y~ = - y Z / c  instead of  Eq. 
(5.3). Since c is positive, it follows that there is no real saddlepoint off the x-axis, 
in agreement with the discussion in Sect. 4.) 

The situation in this section differs from those in Sects. 3 and 4 in that, through 
each transition state, there passes an orthogonal trajectory which descends into 
the respective exit channel. Strictly speaking both trajectories originate at the 
reactant (here at x = -co) in agreement with the theorem that orthogonal trajec- 
tories bifurcate only at stationary points. It is therefore justified to "state that 
bifurcation precedes the transition states. On the other hand, if the value of  IEsl 
is small compared to  ]ER] , with E R being the energy of  the reactant, and if ys is 
small compared to [XR ], the distance of  the reactant from the origin, then it would 
seem unphysical to consider the beginning of  the bifurcation at the location of 
the reactant. As before it would seem reasonable to consider the region preceding 
the VRI point as a bifurcation region. The extent of  this region can perhaps be 
estimated by the intersection of the two straight lines which are tangent to the 
downhill trajectories at the two saddlepoints and which intersect on the x-axis. 
It is apparent that each of these straight lines is the bisectrix of the tangents to 
the two intersecting contours at the respective saddlepoint. These contours are 
given by Eq. (5.8), and, at the saddlepoints, their tangential slopes are 

rn, = +2(y  + 1)x/-c, m2 = + 2 ( y -  1)v/-c, (5.9) 

where the positive signs apply when Ys is negative and the negative signs apply 
when Ys is positive. The slopes of the downhill trajectories at the saddlepoints 
are then given by + m where m is 

m = (1 - M ,  M 2 ) / ( M 1  + M2) (5.10) 
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Fig. 11. Upper panel:  the surface E = 2x - (x + 0.5y2) z = 2x - x 2 - xy  2 - 0.25y 4. Lowerpanel:  the surface  

E = 2 x - x Z - x y 2 - 0 . 3 3 3  . . .  y4. Light  solid lines: contours  for  E < 0 .  H e a v y  solid lines: contours  for  

E >- O. Lowest  heavy  contour: E = 0. I nc r e me n t  be tween  adjacent  contours: 0.3. Dot ted  lines: selected 

o r thogona l  t rajectories  
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with 

M k = ( l + x / l + m 2 k ) / m k ,  k = l , 2 .  (5.11) 

It may be noted that m is positive when Ys is positive, and that m is negative 
when Ys is negative. From these slopes and the saddlepoint coordinates [Eq. 
(5.3)] the x-coordinate of  the "bifurcation point"  is found to be 

xB = 1 - 3, 2 -  Imly /x / 'c .  (5.12) 

It is indicated by cross marks in Figs. 9 and 10. 

In the case cl = -c2 the surface simplifies to 

E = 2 x  - x 2 +  c~y 2, (5.13) 

which is similar to the surface of Eq. (3.3). It differs from it only by a shift of  
the maximum onto the +x  axis. 

Intermediate between cases (3a) and (3c) is case (3b) where A n - - 0  and c2 = 0, 
so that 

E ( x ,  y) = x(2 - x - cly2).  (5.14) 

It is readily seen that in this case the y-axis is a contour which passes through 
the VRI point as well as through the two saddlepoints, indeed intermediate 
between Figs. 9 and 10. 

Figure l l a  exhibits the contours for the case (3d) corresponding to A~= A2A4  
and Cl = c2> 0. Figure 1 lb  exhibits the contours for the case (2e) corresponding 
to A 4 < A 2 / A 2 .  In both these cases the transition states have disappeared. Only 
the VRI point and the maximum remain. 

6. Example of a bifurcating transition region 

The purpose of  this section is to illustrate a bifurcating transition region on an 
actual reaction surface. The example we consider is the ring opening 

C 
/ \ 

H2C CH2 --~ H 2 C = C - - C H 2  

cyclopropylidene allene 

a molecule with 7 x 3 -6 - - -15  internal coordinates. Of  these the most important 
ones are ~b = t h e  ring-opening CCC angle at the central carbon and 6~, 62 the 
dihedral angles between each of the CH2 planes and the CCC plane. Figure 12 
exhibits the reaction surface in terms of  the two variables ~b and 6 = (61+ 62)/2, 
the "average conrotatory angle". The energy is optimized with respect to all other 
13 internal coordinates. The energy surface is calculated with a FORS MCSCF 
wavefunction [11]. There is one reactant, denoted by R, and two possible products, 
denoted by P1 and P2- It is apparent  that the reaction path bifurcates near 6 = 90 ~ 
tb = 84 ~ and a close-up of the surface in the neighborhood of this point is shown 
in Fig. 13a. It can be seen that there are two saddlepoints and a maximum between 
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Fig.  12. The reaction su r f ace  fo r  the ring opening o f  c y c l o p r o p y l i d e n e  to  allene, The angular coordinates 
are explained in the text. R = r e a c t a n t  = c y c l o p r o p y | i d e n e .  P1 a n d  P2 = the two stereoisomeric fo rms  

of the product allene. Light solid lines: c o n t o u r s  fo r  E <- 57.94230 mh .  Heavy solid lines: c o n t o u r s  fo r  

E--> 62.94230 mh .  Increment between c o n t o u r s  = 5 mi l l iha r t r ee  = 3 K c a l / m o l e .  The reactant R is the 
zero  o f  energy 

them, but the changes in energy between these three points are less than 0.5 mh 
(0.3 Kca l /mole )  so that one has indeed a bifurcating transition region. 

A least mean squares fit, based on 63 points, was performed in the domain 
indicated by the rectangle in Fig. 13a (i.e., 80 ~ < 6 < 100 ~ 82 ~ < tb < 88~ It yields 
the expansion 

E = -2341 .024  + 56.39953 tb + 0.4186662 - 0.33074~b z 

+ 0 .0000000084-  0 . 0 0 4 9 7 9 8 ~ 2 ,  (6.1) 

where the reactant, cyclopropylidene,  has been arbitrarily chosen as the zero of  
energy and the energy unit is one millihartree. By setting (02E/062) = 0 for 6 = 0, 
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Fig. 13. Enlargement of the surface of Fig. 12 and polynomial fit in the neighborhood of the VRI 
Point at (3 = 90 ~ ~b = 84.15~ See text in the second paragraph of Sect. 6 for details. Light solid lines: 
contours for E -< 62.44230 mh. Heavy solid lines: contours for E -> 62.94230 mh. Increment between 
contours = 0.5 millihartree ~ 0.3 Kcal/mole 
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one finds the VRI point to be at (6 = 0, ~b ~ 84.15 ~ with E ~ 62.95 mh. Appropriate 
shifts in $ and E yield the expansion in the form of Eq. (2.13) with the coefficients 
(in millihartree) 

a = 0.73702, b = 0.33074, 

Cl = 0.00000, c2 = 0.015057. (6.2) 

A measure of the closeness of the fit is obtained by dividing the value of  the 
least mean square deviation by the mean variation of the energy in the domain 
over which the fit is performed. This ratio is found to be 0.04 indicating that the 
chosen polynomial form is germane. Figure 13b exhibits a contour plot of the 
polynomial fit (6.1). The fit is good within the fitted region indicated by the 
rectangle, but clearly inappropriate outside. Figure 13c shows the contours which 
are obtained by choosing values from the fit (6.1) inside the rectangle and the 
original raw data points outside this rectangle. This plot probably provides the 
best representation of the surface, because the fit (6.1) can be expected to yield 
the most appropriate smoothing function in the immediate neighborhood of the 
VRI point. (The contours in Fig. 13a were obtained by standard second order 
interpolation among the original data points.) From the value of the coefficients 
given in Eq. (6.2) it is apparent that the discussion of Sect. 5 is applicable to this 
problem and that one has in fact the case (bb), because the coefficient of  64 is 
zero within the numerical accuracy of the data. 

It is evident from Fig. 13b that, with the help of the polynomial fit of  Eqs. (6.1), 
(6.2), it is possible to determine the geometry and the energy of the transition 
state accurately: dp = 84.24 o, ~ = 90~177 5L95 o. 

There exist two additional VRI points on Fig. 12, one on the line 6 = 45 ~ another 
on the line 6 = 135 ~ both at about ~b = 84 ~ The existence of the three VRI points 
and of the bifurcation is manifestly related to the fact that the alternation of 
maxima and minima for ~b = 60 ~ is staggered by 45 ~ in the direction of ~ with 
respect to the alternation of maxima and minima at 180 ~ For less transparent 
physical reasons it turns out that the VRI points at ~ = 4 5  ~ and 135 ~ occur 
practically for the same value of ~b as the VRI point at 6 =90 ~ This near 
coincidence accounts for the fact that the straight line ~b = 84 ~ is approximately 
a contour which passes through all three VRI points and also through the two 
saddlepoints. Hence the vanishing of the coefficient of 84 in Eq. (6.1). 

In terms of the language used in the introduction, the vanishing of Aa is an 
"accident". It is therefore not unreasonable to speculate that, under other condi- 
tions, another coefficient may practically vanish. If this would be A1-~ a, then 
one would have a real situation where a point-like bifurcating transition state 
exists to which the discussion of Sect. 3 (case 1) is applicable. 

7. Conclusions 

In the present analysis valley-ridge inflection points are chosen as the basis for 
a discussion of  bifurcations and higher-than-second-order Taylor expansions 
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around such points are explicitly examined. This approach leads to the iden- 
tification of  contour patterns which one can realistically expect to encounter on 
actual surfaces. The following inferences can be drawn. 

The nature of  bifurcations on analytical surfaces away from transition states is 
such that it is more reasonable to associate them with bifurcating regions rather 
than with single points. 

The patterns of  the energy contours near VRI points are quite different from 
those of a monkey saddle. Even though the entrance channel may have the 
character of a valley, the exit channels will more often look like watersheds than 
like valleys. It is possible that the exit channels contain no orthogonal trajectories 
that connect with the transition state. The dynamical implication is that, in the 
exit channels, atomic motions are more floppy than in the entrance channel. 

There exists a finite, although somewhat fuzzy, domain for the values of the 
Taylor expansion coefficients for which there results a near-coincidence between 
a VRI point and a transition state. This is not a rare oddity and, in such cases, 
the neighborhood of a VRI point acquires the character of a bifurcating transition 
region. 

If  a bifurcating transition region is small enough, then it can be useful to employ 
the "unlikely" case 1 surface (A1 = 0), corresponding to a bifurcating transition 
state, as a simplified mathematical model for the discussion of reaction mechan- 
isms. In this case, too, the energy contour pattern is different from that of the 
even less likely monkey saddle. 

While the present analysis assumes Cs symmetry for reasons of simplicity, 
corresponding topographies on more general surfaces can be visualized by apply- 
ing symmetry breaking deformations to the surfaces studied here. Such deforma- 
tions will not destroy the qualitative characteristics of  bifurcations and transition 
points, so that the discussion given here for the various cases is still pertinent. 
In fact, a surface of this kind has been found for the ring-opening of substituted 
cyclopropylidenes. 

While the reaction described in Sect. 6 conforms to case (3b), there is no reason 
why the other cases examined in the preceding sections should not occur on real 
reaction surfaces. 
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